Barriers

Intrinsically Safe: EB3C Discrete Input Barriers

Key features:

- Applicable Standards IEC60079 compliant
Dry-contact switches can be connected to the EB3C
- 8 - and 16 -circuit types are available in common wiring types, ideal for connection to PLCs (DC voltage only)
- Universal AC power voltage (100 to 240 V AC) or 24V DC power (UL rating: 100~120V AC)
- No grounding required
- IDEC's original spring-up terminals minimize wiring time
- Installation: 35-mm-wide DIN rail mounting or direct screw mounting
- Global usage USA: UL/FM Europe: CE marking, Global: IECEx ATEX
Japan: TIIS
China: COST
Korea: KCs
Ship class: NK (Japan), KR (Korea pending)

Entity Barrier Parameters

$\mathrm{Ta}=60^{\circ} \mathrm{C}, \quad U \mathrm{~m}=250 \mathrm{~V},(\mathrm{Um}=125 \mathrm{~V}$ UL only) $, \quad \mathrm{U} 0=13.2 \mathrm{~V}, \quad I 0=14.2 \mathrm{~mA}, \quad \mathrm{P} 0=46.9 \mathrm{~mW}$ at each channel $\mathrm{Pn}-\mathrm{Nn} \mathrm{lo}=227.2 \mathrm{~mA}, \quad \mathrm{Po}=750 \mathrm{~mW}$ at max 16 channels $\mathrm{Pn}-\mathrm{Nn}$

Io(mA)	14.2	28.4	42.6	56.8	71.0	85.2	99.4	113.6	127.8	142.0	156.2	170.4	184.6	198.8	213.0	227.2	Combined
Po(mW)	46.9	93.8	140.6	187.5	234.3	281.2	328.1	375.9	421.8	468.7	515.5	562.4	609.2	656.1	702.9	750	Lo(mH)
	0.67	0.65	0.63	0.61	0.59	0.57	0.55	0.53	0.51	0.49	0.47	0.44	0.42	0.39	-	-	1.0
Co $(\mu \mathrm{F})$	0.79	0.77	0.76	0.75	0.73	0.72	0.70	0.69	0.67	0.66	0.64	0.62	0.61	0.59	0.57	0.55	0.5
	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.93	0.92	0.91	0.90	0.88	0.87	0.86	0.85	0.84	0.2

Note 1 Added to above table, the next values combined Lo and Co are allowable;

Io(mA)	14.2						28.4						227.2					
Lo(mH)	175*	87.5	30.0	2.5	0.55	0.25	43.5*	21.5	20.0	3.5	0.43	0.25	0.68*	0.34	0.68	0.6	0.22	0.13
Co($\mu \mathrm{F}$)	0.90*	0.45	0.33	0.54	0.77	0.90	0.90*	0.45	0.30	0.48	0.80	0.90	0.90*	0.45	0.45	0.49	0.80	0.90

TIIS, NK only $\mathrm{Ta}=60^{\circ} \mathrm{C}$, Um=250V

	1 ch	16 ch
Seperate	Common 16	
Uo	13.2 V	13.2 V
Io	14.2 mA	227.2 mA
Po	46.9 mW	750 mW
Co	$0.47 \mu \mathrm{~F}$	$0.365 \mu \mathrm{~F}$
Lo	87.5 mH	0.425 mH

Note 2 The intrinsic safe apparatus and wirings shall be accordance to following formulas; for example: $\mathrm{Ui} \geq \mathrm{Uo} \quad \mathrm{Ii} \geq \mathrm{lo} \quad \mathrm{Pi} \geq \mathrm{Po} \quad \mathrm{Ci}+\mathrm{Cc} \leq \mathrm{Co} \quad \mathrm{Li}+\mathrm{Lc} \leq \mathrm{Lo}$
*: Therefore, the values are allowable only at $\mathrm{Li} \leq 1 \% \mathrm{Lo}$ and $\mathrm{Ci} \leq 1 \% \mathrm{Co}$ of the intrinsic safe apparatus. (In the case of 50% of Co and Lo parameters are applicable,the maximum capacitance allowed shall not be more than $\mathrm{Co}=1 \mu \mathrm{~F}$ for IIB and $\mathrm{Co}=600 \mathrm{nF}$ for IIC.)

Dry Contact Switches

Dry-contact switches can be connected to the EB3C.

Spring-up Fingersafe Terminals Reduce Wiring Time

Common Wiring for PLC Inputs

8 - and 16 -circuit types are available in common wiring types, ideal for connection to PLCs (DC voltage only).

Connector Type

MIL connector on the non-hazardous side

- Easy connection to PLCs
- Wiring reduced
- Various 20-pin MIL connectors can be connected

Ratings				See Certification Numbers table below	
Degree of Protection				IP20 (IEC60529)	
	Discrete Input Barrier			Safe indoor place (non-hazardous area)	
Non-intrinsically Safe Circuit Maximum Voltage (Um)				250V AC 50/60Hz, 250V DC 125 V AC $50 / 60 \mathrm{~Hz}, 125 \mathrm{~V}$ DC (UL rating)	
	Wiring Method			1-channel Separate Wiring	16-channel Common Wiring
	Rated Operating Voltage			$12 \mathrm{~V} D \mathrm{C} \pm 10 \%$	
	Rated Operating Current			$10 \mathrm{~mA} \mathrm{DC} \pm 20 \%$	
	Contact Configuration			1NO	
	Rated Insulation Voltage (Ui)			250 V AC (UL rating: 125 V AC), 125V DC	
		Thermal Current (Ith)		3A (common terminal: 8A)	
		Contact	Resistive Load	AC: $750 \mathrm{VA}, ~ \mathrm{DC}: 72 \mathrm{~W}$	
		Allowable Power	Inductive Load	AC: $750 \mathrm{VA}(\cos \varnothing=0.3$ to 0.4$)$ DC: 48 W ($\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	
			Resistive Load	250 V AC	DC 3A
	$\begin{aligned} & \stackrel{H}{3} \\ & \frac{2}{Z} \end{aligned}$	Rated Load	Inductive Load	$\begin{aligned} & 250 \mathrm{~V} \text { AC } 3 \\ & 24 \mathrm{~V} \text { DC } 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \theta=0.3 \text { to } 0.4) \\ & 7 \mathrm{~ms} \text {) } \end{aligned}$
	$\underset{\sim}{\star}$	Minimum A	licable Load	0.1 V DC,	reference value)
		Contact Res	tance	$50 \mathrm{~m} \Omega$ max	initial value)
		ON Time		12 ms max	rated voltage)
		OFF Time		10 ms max	rated voltage)
		Mechanical		$\begin{aligned} & 20,000,000 \\ & 18,000 \text { ope } \end{aligned}$	ions minimum (at /hour, without load)
		Electrical Lif		$\begin{aligned} & 100,0000 \\ & \text { (at 1,800 } \end{aligned}$	s minimum s/hour, rated load)
		Short-circuit	Protection	None	
		Rated Voltage		24V DC	
		Maximum V	Itage	30V DC	
		Maximum C	rrent	100 mA (co	type: 15 mA)
		Leakage Cur		0.1 mA ma	
		Voltage Drop		1.5 V maxim	
		Clamping Vo	tage	33 V (1W)	
		Inrush Curre		0.5A maxim	sec)
		ON Time		0.1 ms max	resistive load)
		OFF Time		0.4 ms (typ	esistive load)
		Short-circuit	Protection	None	

EB3C General Specifications
 B3C General Specifications

	AC	DC
Rated Voltage	100 to 240 V AC (UL rating: 100~120V AC)	24V DC
Allowable Voltage Range	$\begin{aligned} & 85 \text { to 264V AC } \\ & \text { (UL rating: } 85 \text { ~ } 125 \mathrm{~V} \text { AC) } \end{aligned}$	21.6 to 26.4V DC
Rated Frequency	$50 / 60 \mathrm{~Hz}$ (allowable range: $47 \text { to } 63 \mathrm{~Hz}$	-
Inrush Current	$\begin{aligned} & 10 \mathrm{~A}(100 \mathrm{VAC}) \\ & 20 \mathrm{~A}(200 \mathrm{VAC}) \end{aligned}$	10A

Specifications

Part Numbers

Accessories

	Item		Part Number
	DIN Rail	BAP1000	Steel (1m long, 7.5mm high)
	BAA1000	Aluminum (1m long, 10.5mm high)	
	EnL6 Clip	Medium DIN rail end clip	
S.	Static Electricity Caution Plate	EB9Z-N1	Polyester 20 $(\mathrm{W}) \times 6(\mathrm{H}) \mathrm{mm}$

Circuit Diagrams

Internal Circuit Block Diagrams

AC Power, Relay Output Type

DC Power, Transistor Output Type

Connector Wiring, Sink Output Type

Wiring Examples

External Wiring Examples

Transistor Output Type (Ex.: EB3C-T06AN)

Note: On the sink/source transistor output type, terminals A can be used as a positive common line.

Relay Output Type (Ex.: EB3C-R06AN)

Transistor Sink Output Type (Ex.: EB3C-T08CKDN)

Transistor Source Output Type (Ex.: EB3C-T08CSDN)

Relay Output Common Wiring Type (Ex.: EB3C-R016CDN)

Barriers

Connector Wiring Terminal Arrangement

EB3C-T16CKD-CN (Sink)

EB3C-T16CSD-CN (Source)
CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16

EB3C-T16CKD-CN		FC4A-N16B3		EB3C-T16CSD-CN		FC4A-N16B3	
Terminal	Output	Input	Terminal	Terminal	Output	Input	Terminal
20	A1	10	20	20	A1	10	20
19	A9	110	19	19	A9	110	19
18	A2	11	18	18	A2	11	18
17	A10	111	17	17	A10	111	17
16	A3	12	16	16	A3	12	16
15	A11	112	15	15	A11	112	15
14	A4	13	14	14	A4	13	14
13	A12	113	13	13	A12	113	13
12	A5	14	12	12	A5	14	12
11	A13	114	11	11	A13	114	11
10	A6	15	10	10	A6	15	10
9	A14	115	9	9	A14	115	9
8	A7	16	8	8	A7	16	8
7	A15	116	7	7	A15	116	7
6	A8	17	6	6	A8	17	6
5	A16	117	5	5	A16	117	5
4	+V	COM	4	4	-V	COM	4
3	NC	COM	3	3	NC	COM	3
2	COM	NC	2	2	COM	NC	2
1	NC	NC	1	1	NC	NC	1

Note: The wiring in dashed line does not affect the operation of the EB3C.
Applicable connector is IDEC JE1S-201.
Output power for PLC outputs is supplied by the EB3C, therefore the PLC output does not need an external power supply.

Barriers

Wiring Example of Intrinsically Safe External Inputs

1. Common Wiring (Maximum 16 circuits)

All input lines are wired to a common line inside the intrinsically safe switch (one common line per intrinsically safe circuit).

Some input lines are wired to a common line inside the intrinsically safe switches, while others are outside switches one common line per intrinsically safe circuit).

All input lines are wired to a common line outside the intrinsically safe switch (one common line per intrinsically safe circuit).

2. Separate Wiring

Each input line of the EB3C makes up one independent intrinsically safe circuit.

Diagram Symbols

Serial-Parallel Connection of Switches

Notes

- As shown in the diagram on the left, the required number of "contacts in one switch" (3 contacts in the example at left) can be added to the "contacts in one switch" connected to one input channel.
- Similarly, a required number of "contacts in one switch" can be added to a common line connected to multiple input channels.
- The capacitance and inductance of the added "contacts in one switch" must be included in the calculation of the wiring capacitance and inductance in "Precautions for Operation, 5. Wiring for Intrinsic Safety, (7)".
- In addition, a required number of contacts can be added in the enclosure of "contacts in one switch." In this case, however, do not include the capacitance and inductance in the calculation of the wiring capacitance and inductance. Instead, make sure that the internal capacitance (Ci) and internal inductance (Li) are within the values shown in the table "Switch Explosion-Protection Specifications (Japan only)"'

Recommended Connector Cable for Connector Types

Description	No. of Poles	Length (m)	Part Number	Shape	Applicable Type
With Shield I/O Terminal Cable Without Shield	20	0.5	FC9Z-H050A20		IDEC MicroSmart I/O Module
		1	FC9Z-H100A20		
		2	FC9Z-H200A20		
		3	FC9Z-H300A20		
		0.5	FC9Z-H050B20		IDEC MicroSmart I/O Module
		1	FC9Z-H100B20		
		2	FC9Z-H200B20		
		3	FC9Z-H300B20		
Cable with Crimping Terminal		1	BX9Z-H100E4		Screw Terminal
		2	BX9Z-H200E4		
		3	BX9Z-H300E4		
40-pin Cable for PLC		1	BX9Z-H100B		Mitsubishi A Series Input Module (positive common) EB3C-T16CKD-CN
		2	BX9Z-H200B		
		3	BX9Z-H300B		

FC9Z-H $\square \square \square$ A, FC9Z-H $\square \square \square$ B Internal Connection

FC9Z-H $\square \square \square$ E4 Internal Connection

Fujitsu Connector	IDEC Connector
FCN-367J024-AU/F	JE1S-201

(Tannantinn CiAal
(Tammantion Cidal

(inal

IDEC Connector JE1S-201

Y-shaped Compresion Terminal
(Marking Tube No.)

Installing the EB3C Intrinsically Safe Barriers

1. The EB3C can be installed in any direction.
2. Install the EB3C intrinsically safe barrier in a safe area (non-hazardous area) in accordance with intrinsic safety ratings and parameters. To avoid mechanical shocks, install the EB3C in an enclosure which suppresses shocks.
3. When installing or wiring the EB3C, prevent electromagnetic and electrostatic inductions in the intrinsically safe circuit. Also prevent the intrinsically safe circuits from contacting with another intrinsically safe circuit and any other circuits.
Maintain at least 50 mm clearance, or provide a metallic separating board between the intrinsically safe circuit and non-intrinsically safe circuit. When providing a metallic separating board, make sure that the board fits closely to the enclosure (top, bottom, and both sides). Allowable clearance between the enclosure and board is 1.5 mm at the maximum.
The clearance of 50 mm between the intrinsically safe circuit and non-intrinsically safe circuit may not be sufficient when a motor circuit or high-voltage circuit is installed nearby. In this case, provide a wider clearance between the circuits referring to 5 (3) "Minimum Parallel Distance between the Intrinsically Safe Circuit and Other Circuits."
4. In order to prevent contact between intrinsically safe circuits and non-intrinsically safe circuits, mount EB3C units with terminals arranged in the same direction.

5. Maintain at least 6 mm (or 3mm according to IEC60079-11: 1999) clearance between the terminal of an intrinsically safe circuit and the grounded metal part of a metal enclosure, and between the relay terminal block of an intrinsically safe circuit and the grounded metal part of a metal enclosure.
6. For installing the EB3C, mount on a 35 mm -wide DIN rail or directly on a panel using screws. Make sure to install securely to withstand vibration. When mounting on a DIN rail, push in the clamp completely. Use the BNL6 end clips on both sides of the EB3C to prevent from moving sideways.
7. Excessive extraneous noise may cause malfunction and damage to the EB3C. When extraneous noise activates the voltage limiting circuit (thyristor), remove the noise source and restore the power.

Terminal Wiring

1. Using a $\varnothing 5.5 \mathrm{~mm}$ or smaller screw driver, tighten the terminal screws (including unused terminal screws) to a torque of 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (recommended value).
2. Make sure that IP20 is achieved when wiring. Use insulation tubes on bare crimping terminals.
3. To prevent disengaged wires from contacting with other intrinsically safe circuits, bind together the wires of one intrinsically safe circuit.
4. When the adjacent terminal is connected to another intrinsically safe circuit, provide an insulation distance of at least 6 mm .

Switches in the Hazardous Area

1. A switch contains the switch contact, enclosure, and internal wiring. A switch contact refers to an ordinary switching device which consists of contacts only, such as a pushbutton switch. See below.

Applicable Switches

Control Switches	Push-pull Switches	Pushbutton, Foot, Trigger, Rocker, Grip
	Twisting Switches	Rotary, Selector, Cam, Drum, Thumb wheel
	Lever and Slide Switches	Toggle, Multidirectional, Wobble stick, Lever, Slide switch
Sensing Switches	Displacement Switches	Microswitch, Limit, Magnetic proximity, Door, Reed, Mercury
	Level Switches	Liquid level
	Others	Pressure, Temperature
Note: For installation in hazardous areas and connection to the EB3C, use switches which are certified, approved, or considered to be simple apparatus in relevant standards in each country.	For installation in hazardous areas and connection to the EB3C, itches which are certified, approved, or considered to be simple tus in relevant standards in each country.	

2. When the switch has internal wiring or lead wire, make sure that the values of internal inductance (Li) and capacitance (Ci) are within the certified values.
3. Enclose the switch contact's bare, live part in an enclosure of IP20 or higher protection.
4. Depending on the explosion-protection specifications according to TIIS, the exposed area of the plastic switch operator is limited as follows:
Exia II CT6 (EB9Z-A):
$20 \mathrm{~cm}^{2}$ maximum
Exia II BT6 (EB9Z-A1):
$100 \mathrm{~cm}^{2}$ maximum
5. Attach the certification mark supplied with the EB3C on the EB9Z-A or EB9ZA1 switch (for Japanese applications).
6. When the switch operator of the plastic enclosure has a wider exposed area than the following limits, attach a caution label.

I C: $20 \mathrm{~cm}^{2}$ maximum
II B: $100 \mathrm{~cm}^{2}$ maximum
To prevent electrostatic charges, do not rub the switch surface during operation switch surface during operation.
Use a soft cloth dipped with water for cleaning.

Caution Label Example

7. For the 1 -circuit separate wiring, a resistor to prevent reed switch contact welding and an LED miniature pilot light can be connected in series with the contact. See below. Use the terminal screw of M3 or larger.

Applicable Resistor Ratings

Resistance	100Ω maximum
Rated Wattage	0.5 to 3 W
Type	Metal (oxide) film resistors

IPL1 series LED miniature pilot lights Output Specifications

1. When wiring the output from the EB3C, connect the non-intrinsically safe circuit to terminals A and C. The EB3C output circuit is not equipped with short-circuit protection. If required, provide a protection in the external circuit.

2. Relay Output

Some types of loads generate reverse emf (such as solenoids) or cause a large inrush current (incandescent lamps), resulting in a shorter operation life of output relay contacts. The operation life of contacts can be extended by preventing the reverse emf using a diode, RC, or varistor, or by suppressing the inrush current using a resistor or RL.
Contacts are made of gold-clad silver. When using at a small current and a low voltage (reference value: $0.1 \mathrm{~mA}, 0.1 \mathrm{~V}$), test the contact on the actual circuit in advance.
3. Transistor Output

When connecting a small load, the load may not turn off because of a leakage current, even though the transistor output is turned off. If this is the case, connect a resistor in parallel with the load to bypass the leakage current.

When an excessively high voltage (clamps at $33 \mathrm{~V}, 1 \mathrm{~W}$) or a reverse voltage is applied to the output terminals, the clamping circuit or output transistor may be damaged.

When driving an inductive load, be sure to connect a diode across the load to absorb reverse emf.

Example of Overvoltage Absorption Circuit

4. In the common wiring only types, the output terminals are not isolated from each other.
5. When connecting the connector type EB3C's in parallel, use one power supply to power the EB3C's. Do not connect any wiring to the C1 and C2 terminals.

Wiring for Intrinsic Safety

1. The voltage applied on the general circuit connected to the non-intrinsically safe circuit terminals of the EB3C relay barrier must be 250 V AC, $50 / 60 \mathrm{~Hz}$, or $250 \mathrm{~V} D$ at the maximum under any conditions, including the voltage of the input power and the internal circuit.
2. When wiring, take into consideration the prevention of electromagnetic and electrostatic charges on intrinsically safe circuits. Also, prevent intrinsically safe circuits from contacting with other circuits.
3. The intrinsically safe circuits must be separated from non-intrinsically safe circuits. Contain intrinsically safe circuits in a metallic tube or duct, or separate the intrinsically safe circuits referring to the table below.
Note: Cables with a magnetic shield, such as a metallic sheath, prevent electromagnetic induction and electrostatic induction, however, a non-magnetic shield prevents electrostatic induction only. For non-magnetic shields, take a preventive measure against electromagnetic induction.

Finely twisted pair cables prevent electromagnetic induction. Adding shields to the twisted pair cables provides protection against electrostatic induction.
Minimum Parallel Distance between the Intrinsically Safe Circuit and Other Circuits (mm)

Voltage and Current of Other Circuits	Over 100 A	100 A or less	50 A or less	10 A or less
Over 440V	2000	2000	2000	2000
440 V or less	2000	600	600	600
220 V or less	2000	600	600	500
110 V or less	2000	600	500	300
60 V or less	2000	500	300	150

4. When identifying intrinsically safe circuits by color, use light blue terminal blocks and cables.
5. When using two or more EB3C's to set up one intrinsically safe circuit in the common wiring configuration, interconnect two neutral terminals (N1 through N 10) on each EB3C between adjacent EB3C's in parallel.
6. Make sure that the power of the EB3C and contact are turned off before starting inspection or replacement.
7. When wiring the intrinsically safe circuit, determine the distance to satisfy the wiring parameters shown below. Note that parameters are different
between separate wiring and common wiring
a. Wiring capacitance $\mathrm{Cw} \leq \mathrm{Co}-(\mathrm{Ci}+\mathrm{N} \times 2 \mathrm{nF})$

Co: Maximum external capacitance of the EB3C
Ci : Internal capacitance of the switch
N : \quad The number of switches connected in series or parallel (the number is infinite)
b. Wiring inductance $\mathrm{Lw} \leq \mathrm{Lo}-(\mathrm{Li}+\mathrm{N} \times 5 \mu \mathrm{H})$

Lo: Maximum external inductance of the EB3C
Li: Internal inductance of the switch
N : The number of switches connected in series or parallel (the number is infinite)
c. Wiring resistance $\leq R w$

Rw: Allowable wiring resistance
d. Allowable wiring distance $D(\mathrm{~km})$ is the smallest value of those calculated from the capacitance, inductance, and resistance.

$D \leq \mathrm{Cw} / \mathrm{C}$	$\mathrm{C}(\mathrm{nF} / \mathrm{km}):$ Capacitance of cable per km
$\mathrm{D} \leq \mathrm{Lw} / \mathrm{L}$	$\mathrm{L}(\mathrm{mH} / \mathrm{km}):$: Inductance of cable per km
$\mathrm{D} \leq \mathrm{Rw} / 2 \mathrm{R}$	$\mathrm{R}(\Omega / \mathrm{km}):$ Resistance of cable per km

Note: For the details of wiring the intrinsically safe circuits, refer to a relevant test guideline for explosion-proof electric equipment in each country.

8) Applicable Wire Size

0.5 to $2.0 \mathrm{~mm}^{2}$ (AWG20 to AWG14): two wires

However, one wire for $2.0 \mathrm{~mm}^{2}$ (AWG14)

Mounting Bracket

The following mounting brackets can be used to install the EB3C relay barriers and EB3L lamp barriers on the mounting holes of IBRC contact signal transducer, IBPL pilot relay barrier, and IBZ buzzer.

No. of Channels	Part No.	Dimension (mm)		
		A	B	C
1	EB9Z-K01	28.0	44.0	61.0
2	EB9Z-K02	51.0	59.5	76.0
3	EB9Z-K03	51.0	75.0	91.5
5	EB9Z-K05	97.0	105.0	122.0
6	EB9Z-K06	97.0	120.0	137.0
10	EB9Z-K10	97.0	181.0	198.0

Dimensions

