SAMSUNG
ELECTRO-MECHANICS

Specification of Automotive MLCC

- Supplier : Samsung Electro-Mechanics
- Product : Multi-layer Ceramic Capacitor
- Samsung P/N : CL31B154KBPWPNE
- Description : CAP, $150 \mathrm{nF}, 50 \mathrm{~V}, \pm 10 \%, \mathrm{X} 7 \mathrm{R}, 1206$
- AEC-Q200 Qualified

Dimension

Size	1206 inch
L	$3.20 \pm 0.15 \mathrm{~mm}$
W	$1.60 \pm 0.15 \mathrm{~mm}$
T	$1.15 \pm 0.10 \mathrm{~mm}$
BW	$0.50 \pm 0.30 \mathrm{~mm}$

B. Samsung Part Number

$\underline{\mathrm{CL}}$	$\underline{31}$	$\underline{\mathrm{~B}}$	$\underline{154}$	$\underline{\mathrm{~K}}$	$\underline{\mathrm{~B}}$	$\underline{\mathrm{P}}$	$\underline{\mathrm{W}}$	$\underline{\mathrm{P}}$	$\underline{\mathrm{N}}$	$\underline{\mathrm{E}}$
$\mathbf{(1)}$	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)

(1) Series	Samsung Multi-layer Ceramic Capacitor			
(2) Size	1206	(inch code)	$\mathrm{L}: 3.20 \pm 0.15 \mathrm{~mm}$	W : $1.60 \pm 0.15 \mathrm{~mm}$
(3) Dielectric		X7R	(8) Inner electrode	Ni , Open Mode Design
(4) Capacitance		150 nF	Termination	Metal-Epoxy
(5) Capacitance		$\pm 10 \%$	Plating	Sn 100\% (Pb Free)
tolerance			(9) Product	Automotive
(6) Rated Voltage		50 V	(10) Special code	Normal
(7) Thickness		$1.15 \pm 0.10 \mathrm{~mm}$	(11) Packaging	Embossed Type, 7" Reel

C. Reliability Test and Judgement condition		
Test items	Performance	Test condition
High Temperature Exposure	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \% Tan $\delta: 0.03$ max. IR : More than $10,000 \mathrm{M} \Omega$ or $500 \mathrm{M} 2 \times \mu \mathrm{F}$ Whichever is smaller	Unpowered, 1,000hrs @ Max. temperature Measurement at $24 \pm 2 \mathrm{hrs}$ after test conclusion Initial Measurement 2* Final Measurement 3*
Temperature Cycling	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \% Tan $\delta: 0.03$ max. IR: More than $10,000 \mathrm{MS}$ or $500 \mathrm{M} 8 \times \mu \mathrm{F}$ Whichever is smaller	1,000Cycles Initial Measurement 2* Final Measurement 3* Measurement at $24 \pm 2 \mathrm{hrs}$ after test conclusion 1 cycle condition: $-55+0 /-3^{\circ} \mathrm{C}(30 \pm 3 \mathrm{~min}) \rightarrow$ Room Temp. (1min) $\rightarrow 125+3 /-0^{\circ} \mathrm{C}(30 \pm 3 \mathrm{~min}) \rightarrow$ Room Temp. (1min)
Destructive Physical Analysis	No Defects or abnormalities	Per EIA 469
Humidity Bias	Appearance : No abnormal exterior appearance Capacitance Change Within ± 12.5 \% Tan $\delta: 0.035$ max. IR : More than $500 \mathrm{M} \Omega$ or $25 \mathrm{M} \Omega \times \mu \mathrm{F}$ Whichever is smaller	$1,000 \mathrm{hrs} 85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$, Rated Voltage and $1.3 \sim 1.5 \mathrm{~V}$, Add 100kohm resistor Initial Measurement 2* Final Measurement 4* Measurement at $24 \pm 2 \mathrm{hrs}$ after test conclusion The charge/discharge current is less than 50 mA .
High Temperature Operating Life	Appearance : No abnormal exterior appearance Capacitance Change Within ± 12.5 \% Tan $\delta: 0.035$ max. IR : More than $1,000 \mathrm{MR}$ or $50 \mathrm{MR} \times \mu \mathrm{F}$ Whichever is smaller	1,000hrs @ $125^{\circ} \mathrm{C}, 200 \%$ Rated Voltage, Initial Measurement 2* Final Measurement 4* Measurement at $24 \pm 2 \mathrm{hrs}$ after test conclusion The charge/discharge current is less than 50 mA .

	Performance	Test condition			
External Visual	No abnormal exterior appearance	Microscope (X10)			
Physical Dimension	Within the specified dimensions	Using The calipers			
Mechanical Shock	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \% Tan δ, IR : Initial spec.	Three shocks in 3 mutually perp $\begin{array}{\|c} \hline \text { Peak value } \\ \hline 1,500 \mathrm{G} \\ \hline \end{array}$ Initial Measurem Final Measurem	ach direction Duration 0.5 ms nt 2* nt 5^{*}	n should of the te Wave Half sine	applied al specimen Velocity $4.7 \mathrm{~m} / \mathrm{sec}$
Vibration	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \% Tan δ, IR : Initial spec.	$5 g^{\prime} \mathrm{s}$ for 20 min ., 12 cycles each of 3 orientations, Use 8 " $\times 5$ " PCB 0.031 " Thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2 " from any secure point. Test from $10 \sim 2,000 \mathrm{~Hz}$. Initial Measurement 2* Final Measurement 5*			
Resistance to Solder Heat	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \% Tan δ, IR : Initial spec.	preheating : $150^{\circ} \mathrm{C}$ for $60 \sim 120 \mathrm{sec}$. Solder pot : $260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{sec}$. Initial Measurement 2* Final Measurement 3*			
ESD	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \% Tan δ, IR : Initial spec.	AEC-Q200-002 or ISO/DIS10605 Initial Measurement 2* Final Measurement 4*			
Solderability	95% of the terminations is to be soldered evenly and continuously	a) Preheat at $155^{\circ} \mathrm{C}$ for 4 hours, Immerse in solder for 5 s at $245 \pm 5^{\circ} \mathrm{C}$ b) Steam aging for 8 hours, Immerse in solder for 5 s at $245 \pm 5^{\circ} \mathrm{C}$ c) Steam aging for 8 hours, Immerse in solder for 120 s at $260 \pm 5^{\circ} \mathrm{C}$ solder : a solution ethanol and rosin			
Electrical Characterization	Capacitance : Within specified tolerance Tan $\delta: 0.025$ max. $\operatorname{IR}\left(25^{\circ} \mathrm{C}\right)$: More than $10,000 \mathrm{M} \Omega$ or $500 \mathrm{M} 8 \times \mu \mathrm{F}$ Whichever is smaller $\operatorname{IR}\left(125^{\circ} \mathrm{C}\right)$ More than $1,000 \mathrm{M} \Omega$ or $10 \mathrm{M} \Omega \times \mu \mathrm{F}$ Whichever is smaller Dielectric Strength	*A capacitor prior to measuring the capacitance is heat treated at $150+0 /-10^{\circ} \mathrm{C}$ for 1 hour and maintained in ambient air for 24 ± 2 hours The Capacitance / D.F. should be measured at $25^{\circ} \mathrm{C}$, $1 \mathrm{kHz} \pm 10 \%, \quad 1 \pm 0.2 \mathrm{Vrms}$ I.R. should be measured with a DC voltage not exceeding Rated Voltage @ $25^{\circ} \mathrm{C}$, @ $125^{\circ} \mathrm{C}$ for 60~120 sec. Dielectric Strength : $\mathbf{2 5 0 \%}$ of the rated voltage for 1~5 seconds			
Board Flex	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \%	Bending to the limit, 3 mm for 60 seconds 1^{*} Initial Measurement 2* Final Measurement 5*			
Terminal Strength(SMD)	Appearance : No abnormal exterior appearance Capacitance Change Within ± 10 \%	18 N , for 60 sec . Initial Measurement 2* Final Measurement 5*			
Beam Load	Destruction value should be exceed 15 N	Beam speed : $2.5 \pm 0.25 \mathrm{~mm} / \mathrm{sec}$			
Temperature Characteristics	X7R From $-55{ }^{\circ} \mathrm{C}$ to $125{ }^{\circ} \mathrm{C}$, Capacitance change should be within $\pm 15 \%$				

D. Recommended Soldering method :

Reflow (Reflow Peak Temperature : $260+0 /-5^{\circ} \mathrm{C}, 30 \mathrm{sec}$.), Meet IPC/JEDEC J-STD-020 D Standard
*1 : The figure indicates typical specification. Please refer to individual specifications.
*2 : Initial measurement : Perform a heat treatment at $150+0 /-10^{\circ} \mathrm{C}$ for one hour after soldering process.
and then let sit for 24 ± 2 hours at room temperature. Perform the initial measurement
*3 : Final measurement : Let sit for 24 ± 2 hours at room temperature after test conclusion, then measure
*4 : Final measurement : Perform a heat treatment at $150+0 /-10^{\circ} \mathrm{C}$ for one hour after soldering process.
and then let sit for 24 ± 2 hours at room temperature. Perform the initial measurement
*5 : Final measurement : Let measure within 24 hours at room temperature after test conclusion.

Product specifications included in the specifications are effective as of March 1, 2013.
Please be advised that they are standard product specifications for reference only.
We may change, modify or discontinue the product specifications without notice at any time.
So, you need to approve the product specifications before placing an order.
Should you have any question regarding the product specifications, please contact our sales personnel or application engineers.

Disclaimer \& Limitation of Use and Application

The products listed in this Specification sheet are NOT designed and manufactured for any use and applications set forth below.

Please note that any misuse of the products deviating from products specifications or information provided in this Spec sheet may cause serious property damages or personal injury. We will NOT be liable for any damages resulting from any misuse of the products, specifically including using the products for high reliability applications as listed below.

If you have any questions regarding this 'Limitation of Use and Application', you should first contact our sales personnel or application engineers.
(1) Aerospace/Aviation equipment
(2) Medical equipment
(3) Military equipment
(4) Disaster prevention/crime prevention equipment
(5) Power plant control equipment
(6) Atomic energy-related equipment
(7) Undersea equipment
(8) Traffic signal equipment
(9) Data-processing equipment
(10) Electric heating apparatus, burning equipment
(11) Safety equipment
(12) Any other applications with the same as or similar complexity or reliability to the applications

